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Fig. 1. The icosahedral array of 12 PMN-driven flex-
tensionals (Lockheed Martin and NUWC collaboration).

Abstract — The Navy has an immediate need for large-
scale, 3D, nonlinear simulations of broadband sonar pro-
jectors.  The example considered here is a volume array
of high-power, electrostrictive (PMN) flextensionals.
Analysis and design of these complex arrays are clearly
pushing the limits of simplified models.  The analytical
burden should be shifted from clever but overextended
designers to computers.  Very large-scale models, broad-
band response and nonlinearity favor explicit time-domain
methods over implicit time- or frequency-domain meth-
ods.  We demonstrate comprehensive finite element mod-
eling of an icosahedral array of 12 electrostrictive
flextensionals.  Behavior of the PMN driver is illustrated
with a 1D finite element (nonlinear harmonic oscillator)
and generalized to a 3D element.  Full-scale, SMP simu-
lations are shown for individual flextensionals and the
icosahedral array including tow-body structure.

INTRODUCTION

Virtually all sonar projectors used in operational Navy
systems are driven by conventional PZT piezoceramics.
However, it is clear that these drivers will not meet future
naval needs, which include much higher power per unit
volume and broadband capability.  To achieve performance
goals, efforts are underway utilizing electrostriction in lead
magnesium niobate (PMN) to drive volume arrays of
flextensionals.  However, electrostriction is inherently
nonlinear, i.e., strain is proportional to 2nd order polariza-
tion.  These high-power flextensional arrays are currently
designed and built on the basis of 1D, lumped parameter,
linearized models.  Although certainly useful and effec-
tive, this approach is at odds with the operational impor-
tance of 3D effects and the intrinsic nonlinearity of PMN.
3D structural and acoustic details along with material
nonlinearity must be included in the design loop.

There are various analytical approaches available to the
flextensional array designer, ranging from hybrid math-
ematical models to full numerical simulations.  It is clear
that much of the preliminary design can and should be
done using existing, simplified models because of their
speed and the veteran designer’s facility with them.  These
linear models are used in combination with empirical data
from a sequence of prototypes.  However, as system re-
quirements and active materials get more complex, it be-

comes increasingly difficult to make a coherent synthesis
of the data and model parameters.  The solution demon-
strated here is to shift the burden to the computer, using
comprehensive finite element models to reduce idealiza-
tions and provide a virtual prototyping capability.  Virtual
prototypes can, in principle, be used to focus on the criti-
cal details of array design, aid in experiment planning,
and help explain the more arcane experimental results.

This paper demonstrates the scale of comprehensive
computer modeling necessary to achieve useful virtual
prototyping of 3D sonar arrays.  Nonlinear material be-
havior, 3D flextensional response, and broadband acous-
tic interaction is included automatically in a time-domain
finite element model of the array of flextensionals.  In
particular, we use the PZFlex finite element code [1] to
model the 3D array of 12 flextensionals shown in Fig. 1.
This array is based on the icosahedral design used in a
collaboration between Lockheed Martin and the Naval
Undersea Warfare Center (NUWC).  Detailed 3D models
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of the flextensional and full volume array in a 2m x 2m x 2m
cube of water with 10 kHz wave resolution require about 1
gigabyte of RAM.  This size of simulation, which is readily
done on a multi-processor workstation, includes complete
nonlinear electromechanical interaction within each
flextensional element and acoustic/mechanical interactions
between them.  The only operational difficulty is building
the complicated 3D finite element model.

We also describe the time-domain electrostrictive simu-
lation capability added to PZFlex.  This is based on the
simple constitutive model formulated by Hom and Shankar
[2].  Electromechanical theory and behavior are illustrated
succinctly by a 1D element (spring-mass model), although
the capability in PZFlex is fully 3D.  The principal nu-
merical implementation issue is nonlinear dependence
of polarization on electric field.  Many, but not all, of
the necessary constitutive properties of PMN have been
measured by Winzer, et al. at Lockheed Martin, Pow-
ers and McLaughlin at NUWC, and Mukherjee and
Sherrit at the Royal Military College of Canada.

FINITE ELEMENT MODELING ISSUES

A 2nd order accurate explicit/implicit (mechanical/elec-
trical), time-domain finite element algorithm [1] is used
here for a number of compelling reasons.  First, it maxi-
mizes problem size in given memory because the mechani-
cal part scales linearly with the number of elements and
the electrical system of equations is restricted to “win-
dows” around the PMN.  Second, it is ideal for broadband
(transient) simulations, where both accuracy and stability
dictate a small time step less than the Courant number for
the grid.  Third, nonlinearity is naturally modeled by an
incremental approach, timestep by timestep.  The fourth
reason is that the algorithm is well-suited to parallel comput-
ing, which is essential at the problem scale required here.

In contrast to imaging arrays [1,3] that are mostly rect-
angular (Cartesian), the job of building finite element
models of 3D sonar arrays like that in Fig. 1 is demand-
ing.  Using PZFlex, this consists of constructing the 3D
physical structure and surrounding water with millions of
“bricks” of the various passive and active materials.  To
this end it is essential that we be able to combine skewed
and Cartesian grids for computational efficiency, and bond
discontinuous meshes, e.g., a 5 to 1 size difference be-
tween water and transducer elements.  Finite element size
is dictated by wavelength in the water and by structural de-
tails in and around the transducers.  Hexahedrons (bricks)
are preferred over tetrahedrons because of lower cost and
higher performance, i.e., relative anisotropic dispersion.
Note that Cartesian elements are 1/5 the computational
cost (floating point operations) of skewed elements.

To run these types of models it is vital that we accommo-
date disparate wavespeeds among different model regions,
e.g., between elements of water (vL≈1500 m/s) and alumi-
num (vL≈6380 m/s) or PMN (vL≈4477 m/s).  The optimum
timestep in each can differ by a factor of 50 because of rela-
tive wavespeed and element size. Therefore, subcycling is
mandatory.  This is simply a scheme for integrating neigh-

boring elements or zones at their own near-optimal timestep,
by making them integer multiples.  Subcycling may be used,
for example, to integrate 50 timesteps in a refined transducer
mesh for each timestep in the surrounding coarse water mesh.
Aggressive subcycling is required to maximize computer
resources, making very large-scale problems feasible.

Coupled mechanical (hyperbolic) and electrical (ellip-
tic) field calculations are required at each timestep and
different algorithms are best for each.  In particular, sys-
tems of nonlinear equations must be solved for the elec-
tric field in the PMN and the field is negligible outside
because of PMN’s very high relative dielectric constant.
Therefore, the calculation can be confined to decoupled
“electric windows,” which may be solved in parallel, i.e.,
each assigned to its own processor.  Details of the algo-
rithm are described below.

COMPUTER REQUIREMENTS

 Current and future array problems may require on the
order of 50 million elements to capture the full range of
physical scales and electromechanical interactions.  No
single central processing unit (CPU) is fast enough for
reasonable turnaround.  Furthermore, the entire calcula-
tion must be retained in random access memory (RAM)
because disk I/O is still relatively slow.  Therefore, mul-
tiple CPUs with large amounts of memory are necessary.
We are currently using an 8-processor Silicon Graphics
Origin 2000 server with 6 gigabytes of RAM.

There are essentially two multiple processor paradigms:
parallel processing (PP) and symmetric multiprocessing
(SMP).  From our very focused perspective, PP splits the
problem domain into pieces and assigns each to its own pro-
cessor with dedicated memory, while SMP splits the range
of each admissible do loop among the available processors
with shared memory.  PP runs a copy of the solver on each
processor and requires message passing at internal bound-
aries using multiprocessing languages like PVM and MPI.
SMP uses the multithreading paradigm and requires “index
independence,” i.e., no dependencies between different
ranges in the do loop.  PP is more scalable (two to thousands
of processors) than SMP (two to tens of processors) because
the later is limited by shared memory bandwidth.  PP also
requires significantly more code modifications.  We utilize
the SMP paradigm in the following because it is the basis
for forthcoming multiprocessor platforms using inexpen-
sive personal computer technology.

ELECTROSTRICTIVE MODELING

In electrostrictive materials, an applied electric field E
produces strain SP proportional to second order polariza-
tion P, i.e., SP=QP2 in 1D, where Q is the electrostrictive
coefficient.  A number of constitutive theories exist for
electrostrictors, e.g., [4,5]. An attractive phenomenologi-
cal theory was proposed recently by Hom and Shankar
[2].  They use the approach of Suo [4] and add an explicit
formula for polarization saturation that appears more natu-
ral than polynomial assumptions, e.g., [5].  From a formula
used in [6] to model piezoelectric hysteresis, the satura-



Fig. 2.  Nonlinear behavior of the PMN harmonic oscilla-
tor model, showing static displacement versus voltage
(top), velocity response to a 17.5 kHz sine wave at 66%
of the bias voltage VB (middle) and the spectrum quanti-
fying harmonic generation (bottom).
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tion model assumed for polarization at zero stress is
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where PS is spontaneous (or saturation) polarization and κ
is a material constant.  Note that electric displacement
D=ε0E+P, so from (1) D=ε0E+PStanh(κE)≈ε0E+PSκE for
small E and zero stress.  Since PS≈0.259 C/m2 and
κ≈1.16x10-6 m/V in the PMN considered here [2], free-
space permittivity ε0=8.854x10-12 C/V/m is negligible
compared to PSκ≈0.3x10-6 C/V/m, i.e., relative permit-
tivity ε=PSκ/ε0≈34,000. Therefore, electric displacement
is effectively equal to polarization, D≈P, for small E and
zero stress.  In 1D the Hom and Shankar continuum con-
stitutive relations become

T cS cQP E QTP
P

PM
S

= − = − +

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−2 12
1

, tanh
κ

(2)

where T is stress, SM is elastic strain, c is elastic stiffness,
and temperature dependence is neglected.

We first consider the simplest electrostrictive spring-
mass model of a PMN bar with area A, length L, and den-
sity ρ.  This lumped mass (m=ρAL/2) approximation pic-
tured at the top of Fig. 2 constitutes the basic 1D finite
element.  Multiplying stress by area A and electric field by
length L in (2) yields the spring constitutive equations as

   F ku kLQP V
LQ
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L P
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where F=-AT is spring force, k=AC/L is spring stiffness,
u=u1-u2=LSM is spring compression, and V=LE is volt-
age.  Differentiating the voltage equation in (3) with re-
spect to time and solving for dP/dt yields
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where overdots denote time derivatives. I is electric current,
equal to the time derivative of electric displacement D≈P.

To write the governing ordinary differential equations
(ODEs), assume symmetric response so that u1=-u2=u/2,
set F in (3) equal to mass times acceleration, (m/2)d2u/
dt2, and use (4) to write

d
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Initial conditions are calculated from (3) by prescribing
bias voltage VB and “prestress” F0 (with zero bias voltage)
and solving the static nonlinear equations (using Newton’s
method, for example) for “bias polarization” PB and
“precompression” u0.  We assume zero initial velocity.  The
system of equations in (5) is solved using standard ODE
solvers, e.g., 4th order Runge-Kutta.

An example of electrostrictive oscillator response is
shown in Fig. 2.  Dimensions of the bar are equal to the
PMN multilayer stack used in the flextensional (see be-
low).  Bias voltage is centered in the linear part of the

static displacement-voltage curve as shown.  Applied volt-
age is sinusoidal and ramped up over seven cycles.  At
low drive voltages the response is essentially sinusoidal
but as voltage is increased, harmonic distortion appears
due to the nonlinear constitutive behavior.  Fig. 2 shows
the distorted velocity waveform and its amplitude spec-
trum when applied voltage is 66% of the bias voltage.  Nu-
merical experiments indicate that the higher harmonics
generated are particularly sensitive to damping.

The 3D electrostrictive finite element algorithm is more
involved but conceptually similar to the 1D algorithm de-
veloped and demonstrated above.  It will not be described
here.  Suffice it to say that the electrostrictive algorithm



Fig. 3.  Behavior of a single flextensional model driven in
water, showing wave pattern and electrical response.
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consists of the standard electromechanical algorithm in
PZFlex plus the nonlinear electric field solver for P, u,
and E.  This solver uses a Newton iteration with constant
matrix based on the initial value of dP/dE, and an interior
Newton iteration to solve the transcendental equation for
P at fixed strain.

FLEXTENSIONAL SIMULATIONS

The first level of 3D model complexity we considered
was the single electrostrictive flextensional in water.  This
model was driven with a transient, 1 kV voltage pulse on
a 4 kV bias with prestress sufficient to keep the PMN driver
in compression.  The simulation ran until electrical re-
sponse reached zero asymptotically, i.e., through its
“ringdown” phase as acoustic waves radiated the
flextensional’s energy into the surrounding water.  Time
histories of voltage and current were Fourier transformed
and impedance or admittance versus frequency calculated.
The conductance plot (real part of admittance) is shown
in Fig. 3.  Note that 4.5 kHz is the design frequency for

this device and model discretization provides adequate
resolution out to 9 kHz.  Also in Fig. 3 is a model cross-
section showing the acoustic wave pattern at 4.5 kHz.
Water boundaries are terminated with a local radiation con-
dition, which is seen to be quite effective.  At this design
frequency, the radiation pattern is nearly omnidirectional.

Magnified modal response is illustrated by a cutaway
and cross-sections in Fig. 4 at the 4.5 kHz driving fre-
quency.  The cutaway shows details of the flextensional
model, consisting of two 10-layered PMN stacks, .35 x
1.5 x 2.1 in., with cofired electrodes and capped with pre-
stress shims. These drive two elliptical rings or thick shells
(flextensionals) between endplates held together by four
Delrin/aluminum tension rods.  In practice, Teflon con-
tacts are used to reduce friction at the endplate-ring inter-
face, so sliding on the contact surface is modeled with a
Coulomb friction interface element.  Note that a param-
eter study showed minor performance dependence on low
to moderate friction angles.

Fig. 4.  Views of mode shapes in the single flextensional
model driven at 4.5 kHz.



Fig. 5.  View of the finite element model showing upper
half of array and lower half of 2m x 2m x 2m water cube.

Both 1D and 3D drivers were used in the flextensional
simulations.  The 3D model is in the cutaway in Fig. 4,
while the 1D model from Fig. 2 drove the ring deforma-
tion cross-sections of Fig. 4.  At operational frequencies
around 4.5 kHz, flextensional acoustic performance was
essentially independent of 1D or 3D driver details, al-
though not at higher frequencies, specifically, the 8.5 kHz
mode.  However, despite low frequency acoustic equiva-
lence, important 3D stack response details are observed.  In
particular, Poisson effects cause high shear strain in the outer
PMN layers of each stack.  This deformation is seen in Fig.
4 and correlates with a number of experimental stack fail-
ures observed in the outer PMN layer.  Note that tension rod
oscillations shown in Fig. 4 can be complex and are, of course,
sensitive to cross-section and end details.

ARRAY SIMULATIONS

 The next level of 3D model complexity was the icosa-
hedral array of flextensionals in a 2x2x2 m3 box of 1 cm3

water elements, terminated by radiation conditions.  A
blowup of the model is shown in Fig. 5, where water ele-
ments in the top half are made transparent.  This calcula-
tion used the 1D PMN drivers in each flextentional.  The
principal difficulty with models of this complexity is bond-
ing the various meshed regions, e.g., connecting the
skewed and very detailed flextensional array mesh to the
trivial Cartesian water mesh.  To save time building the
model we simply voided overlapping elements in the ar-
ray mesh, trading redundant computation and memory for
setup time.  There are a number of similar modeling
tradeoffs, most of which can be removed by programming
more efficient, tailored modeling constructs.

The array was phased to project a beam towards the
upper left in Fig. 5 and driven by a 4.5 kHz, 1 kV peak-to-
peak sine wave on a 4 kV bias, with prestress.  A snapshot
of the radiated acoustic field is shown in Fig. 6 on a verti-
cal (symmetric) exposure through the cube of water.  The
beam pattern measured from this calculation is very close
to experimental observations.  Besides showing unifor-

mity of the calculated wave field and effectiveness of the
radiation boundary conditions, this view confirms that
time-domain analysis is able to capture relatively low fre-
quency flextensional array response.  Array diameter is
comparable to wavelength, which is much larger than
structural details of the flextensionals.  Nonetheless, the full
range of length scales is represented by the calculation.  Note
that the subcycling ratio was 50 in this case, i.e., 50 timesteps
in the array mesh for each timestep in the water mesh.

The last level of model complexity considered was the
icosahedral array model in a fiberglass box representing a
rudimentary tow-body with a steel strongback (mount) above
and a lead ballast plate below.  This is pictured in Fig. 7.  The
flextensional model is identical to the previous case, Fig. 5,
but with material properties redefined in water elements co-
inciding with the tow-body structure.  Results from this calcu-
lation are shown in Fig. 8.  The point is that with the level of
discretization available, the volume array and surrounding struc-
ture can be included in “production” finite element models of
sonar projectors and similar devices.

These large-scale array models use approximately 10
million elastic finite elements, run in single-precision (32
bit word), and require about one GByte of random access
memory.  For these and similar calculations, parallel effi-
ciency on an 8-processor SGI Origin 2000 SMP machine
is 70%, i.e., the effective processor count is 0.7x8=5.6.
On a single processor these calculations take ≈150 hours,
but only 27 hours in SMP mode.  Note, however, that if
we had used the 3D PMN driver, run time would have
increased significantly.

DISCUSSION AND CONCLUSIONS

We have developed an electrostrictive finite element
modeling capability.  It is fully operational within PZFlex,
an explicit, time-domain, electromechanical code for large-
scale structural dynamics and wave propagation.  Perti-
nent finite element modeling issues are discussed and
multiple processor computing is reviewed, emphasizing

Fig. 6. Radiated acoustic field in the icosahedral
array model.  Phasing projects a beam to the left.



Fig. 8. Radiated accoustic field from the icosahedral array
in a fiberglass box with a strongback and ballast plate.

the symmetric multiprocessing (SMP) paradigm.  The 3D
electrostrictive algorithm is based on the constitutive
model proposed in [2], and demonstrated for a nonlinear
harmonic oscillator corresponding to the simplest 1D fi-
nite element.  Models of the flextensional and array de-
signs by Lockheed Martin are built and large-scale simu-
lations run on an SMP machine with 8 processors.

These calculations prove the utility of the explicit, time-
domain algorithm for low-frequency sonar-type prob-
lems.  Until now, sonar problems have been solved al-
most exclusively using implicit methods.  Furthermore,
we have demonstrated the ability to simulate the entire
range of relevant length scales in production calculations
that run in a reasonable amount of time on available mul-
tiprocessor workstations.  The flextensional and bare
array simulations described here were actually much
larger than required.  The absorbing boundary condition

is effective enough to permit halving the model in each
direction, yielding a problem 1/8 the original size.  How-
ever, the array and “tow-body” combination do require
the problem scale demonstrated.  Note that steady state
or transient beam patterns may be calculated by the
Kirchhoff integral of pressure and velocity time histories
on a nodal box surrounding the flextensional or array.

All of our initial modeling objectives have been met
in this exercise by adding electrostrictive finite elements
(1D, 2D, 3D) to PZFlex and modifying its core code
loops for the SMP paradigm.  The next set of objectives
must include model and code validations against labo-
ratory and field tests at the material, flextensional, and
array levels.  For example, the fundamental PMN con-
stitutive model [2] has not been validated against any
resonator (dynamic) data at this time, irrespective of fi-
nite element modeling issues.  Clearly, PMN resonator vali-
dations must be the first order of business.  These should
be followed by finite element model validations against
existing electrical and acoustic data from the flextensional,
which would naturally lead to validations against array data.

This exercise also suggests various modeling enhance-
ments, including model building (software) tools, useful
GUI constructs, hysteresis models, and coupled thermal
capability.  All of these enhancements have been devel-
oped by us in one form or another.  They simply have to
be extended and/or incorporated in the production code.
Nonetheless, the capability for large-scale, 3D, nonlinear
simulations of broadband, electrostrictive, flextensional
arrays is now available, in production mode, for param-
eter studies and design iterations of potentially useful so-
nar projector systems.
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Fig. 7. PZFlex finite element model of icosahedral array within
a fiberglass box with steel strongback and lead ballast plate.


